
BRITISH MATHEMATICAL OLYMPIAD

Round 2 : Thursday, 11 February 1993

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions are required. Marks awarded
will depend on the clarity of your mathematical
presentation. Work in rough first, and then draft
your final version carefully before writing up your
best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than trying all four problems.

• The use of rulers and compasses is allowed, but
calculators are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

Before March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (on 15-18 April).
On the final morning of the training session,
students sit a paper with just 3 Olympiad-style
problems. The UK Team for this summer’s
International Mathematical Olympiad (to be held
in Istanbul, Turkey, July 13–24) will be chosen
immediately thereafter. Those selected will be
expected to participate in further correspondence
work between April and July, and to attend a short
residential session before leaving for Istanbul.

Do not turn over until told to do so.

BRITISH MATHEMATICAL OLYMPIAD

1. We usually measure angles in degrees, but we can use any other unit we
choose. For example, if we use 30◦ as a new unit, then the angles of a
30◦, 60◦, 90◦ triangle would be equal to 1, 2, 3 new units respectively.

The diagram shows a triangle ABC with a
second triangle DEF inscribed in it. All
the angles in the diagram are whole number
multiples of some new (unknown unit); their
sizes a, b, c, d, e, f, g, h, i, j, k, ℓ with respect to
this new angle unit are all distinct.

Find the smallest possible value of a+b+c for
which such an angle unit can be chosen, and
mark the corresponding values of the angles a
to ℓ in the diagram.

2. Let m = (4p
− 1)/3, where p is a prime number exceeding 3. Prove that

2m−1 has remainder 1 when divided by m.

3. Let P be an internal point of triangle ABC and let α, β, γ be defined by

α = 6 BPC − 6 BAC, β = 6 CPA − 6 CBA, γ = 6 APB − 6 ACB.

Prove that

PA
sin 6 BAC

sinα
= PB

sin 6 CBA

sin β
= PC

sin 6 ACB

sin γ
.

4. The set Z(m,n) consists of all integers N with mn digits which
have precisely n ones, n twos, n threes, . . ., n m s. For each
integer N ∈ Z(m,n), define d(N) to be the sum of the absolute values
of the differences of all pairs of consecutive digits. For example,
122313 ∈ Z(3, 2) with d(122313) = 1 + 0 + 1 + 2 + 2 = 6. Find the
average value of d(N) as N ranges over all possible elements of Z(m,n).


